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Abstract 

December 2006 and March 2007 were both record warm in large parts of northern Europe. Here 
we focus on temperatures observed in Helsinki, Finland, and study whether these mild winter months can 
be interpreted just as an extreme of natural variability or whether they should be regarded as a symptom 
of the ongoing global warming. A regression analysis suggests that atmospheric circulation conditions 
affected the warmth of both months, with a particularly large contribution in December. Yet, the 
regression model is not accurate enough to reliably tell how large a part of the warm anomalies should 
be attributed to factors other than circulation, including potentially a circulation-independent 
contribution of global warming. We therefore also apply a frequentist approach. Making use of the 
observed global warming and assuming that climate models correctly simulate the geographical pattern 
of forced temperature change, we reach the estimate that the temperatures observed in December 2006 
and March 2007 should have a return period of about 60�80 years in the actual present-day climate. By 
contrast, observations for 1901�2005 suggest return periods of the order of several hundred years. Thus, 
the warming observed this far appears already to be sufficient to cause a several-fold increase in the 
probability of extremely high monthly mean temperatures. In the future, with continued global warming, 
this probability will further increase. 
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1. Introduction 

Extreme events like heavy precipitation, drought, wind storms, heat waves or 
unseasonally mild winters are often perceived by the public as expressions of climate 
change. Depending on the type of event and other circumstances, this perception may be 
either wrong or at least partially right. On one hand, extremes have always occurred just 
as one end of natural variability. On the other hand, there are strong reasons to believe 
that the ongoing, largely greenhouse gas induced (Hegerl et al., 2007) global warming 
will make some types of extremes more intense and more common. This is particularly 
true for exceptionally high temperatures, but intense precipitation and droughts are also 
projected to increase in frequency and severity in large parts of the world (Kharin et al., 
2007; Meehl et al., 2007a; Sheffield and Wood, 2008). 
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It is hard, if not impossible, to mechanistically pinpoint the effect of 
anthropogenic climate change in any specific extreme event. For example, the 
immediate trigger for the record-breaking European heat wave in summer 2003 was a 
long period of anticylonic weather, with an amplifying feedback from severely reduced 
soil moisture (Fink et al., 2004; Black et al., 2004). To deterministically attribute the 
heat wave to human action, one would either need to show that the anticyclone itself 
was caused by anthropogenic climate change, or that the observed temperatures were 
significantly higher than they would have been under similar atmospheric circulation in 
an unperturbed climate. Given the chaotic nature of the atmospheric circulation, the first 
option is probably out of question, although the type of circulation that was observed in 
summer 2003 may in fact be favoured by increased greenhouse gas concentrations 
(Meehl and Tebaldi, 2004). The second option is also difficult. While one can attempt to 
relate the atmospheric circulation and temperatures in a statistical manner, so as to find 
how warm temperatures could have been expected just given the observed circulation, 
the error margins in such calculations tend to be substantial (as shown in Section 3 of 
this paper). 

Alternatively, the attribution issue can be studied from a frequentist point of view 
(Allen, 2003). Rather than directly trying to determine the cause of a specific event, this 
approach attempts to find out (i) how often such events can be expected to occur in the 
actual present-day climate, and (ii) how often they would be expected in a world 
without any anthropogenic climate change. If the actual present-day frequency is 
substantially larger than the frequency in an unperturbed climate, then it is justified to 
claim that the occurrence of such a severe extreme event would have been unlikely 
without anthropogenic forcing.  

In practice, the required frequencies for both the uperturbed climate and the real 
present-day (early 21st century) climate are known imperfectly. This difficulty relates 
both to estimating the frequency of extremes from short observational time series and to 
quantifying the effects of anthropogenic climate change. Nevertheless, even when 
taking these uncertainties into account, Stott et al. (2004) found that anthropogenic 
climate change has very likely at least doubled the risk of very hot European summers. 
Here, �very hot� denotes a summer mean temperature higher than any observed before 
2003. For a summer similar to or warmer than that actually observed in 2003, the 
relative increase in risk would have been even larger. 

In this paper, we apply the frequentist framework of Allen (2003) to a case study 
of two winter months, December 2006 and March 2007, which were both extremely 
mild in northern Europe. In Helsinki, Finland (60°N, 25°E), the previous records of 
monthly mean temperature were exceeded by over 1ºC in both cases. Our analysis 
suggests that the probability of such high temperatures has already increased 
substantially due to the ongoing global warming. Therefore, return period estimates 
based on past observations alone are likely to severely underestimate the actual 
likelihood of such mild winter months in the present climate.   

Our study is less ambitious than that of Stott et al. (2004), who used an 
observationally constrained fingerprint methodology to isolate the anthropogenic 
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contribution to European climate changes. We just derive a model-based estimate on the 
change in the probability distributions of December and March mean temperatures due 
to the ongoing global warming, without addressing the question of how much of the 
increase in the global mean temperature is due to human activities. To link the global 
warming to changes in local temperature climate, we use results from 22 climate 
models, as described briefly in Section 4 and in more detail in Räisänen and 
Ruokolainen (2008; hereafter RR08). Thus, our study focuses on the practical question 
of how probabilities of extremes change in a warming climate, rather than on 
demonstrating the connection of these changes to human activity. However, to gain 
some understanding of the uncertainty in our probability estimates, we do study their 
sensitivity to both the choice of the climate model used in the analysis and to the way in 
which the tail of the distribution is estimated from the available data. 

In Section 2, we briefly describe the weather conditions in winter 2006�2007 in 
northern Europe, focusing mainly on the temperatures observed in Helsinki. In Section 
3, we use linear regression in an attempt to quantify to what extent the positive 
temperature anomalies in December and March could be explained by anomalous 
atmospheric circulation. However, the impact of other factors, including potentially a 
circulation-independent contribution from global warming, cannot be quantified with 
sufficient accuracy with this method. In Section 4, we apply the method of RR08 to 
estimate the probability distributions of December and March mean temperature in 
Helsinki in the 20th century and in the actual present-day climate. This analysis, which 
combines the observed global warming with model-simulated climate changes, suggests 
that temperatures similar to or higher than those observed in December 2006 and March 
2007 should now be several times more probable than they were in the 20th century. A 
summary of the main findings is given in Section 5. 

2. Temperatures observed in winter 2006�2007 

Even in the context of the large interannual and intraseasonal variability that is 
typical for winters in northern Europe, winter 2006�2007 was unusual. In Helsinki (Fig. 
1), the first cold period occurred in the beginning of November, but it turned out to be 
short-lived. From mid-November to mid-December, daily mean temperatures remained 
remarkably steady around +6°C, a value typical for October. After this, the weather 
became somewhat more variable but mild conditions still dominated until 19 January. In 
contrast, the end of January and February were characterized by proper winter weather, 
including two decent cold-air outbreaks between a few short-lived thaws. However, the 
cold period terminated in the end of February, and March was mild from its very 
beginning, with gradually increasing temperatures towards the end of the month. On 26 
March the maximum temperature in Helsinki reached 15.1°C, exceeding the previous 
March record of 12.6°C from 1945 by 2.5°C.  

In terms of the monthly mean temperature, both December (4.0°C) and March 
(3.1°C) were warmer than ever before since the measurements in Helsinki commenced 
in 1829. The previous record value for December was 2.9°C (1929) and that for March 
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2.0°C (1989). The two months were mild elsewhere in northern Europe as well (Fig. 2), 
with previous record values exceeded in large areas. Overall, the positive temperature 
anomalies in March were slightly smaller than those in December, but they were equally 
unusual considering the smaller interannual temperature variability in northern Europe 
in March than earlier in winter. In Helsinki, for example, the interannual standard 
deviation of monthly mean temperatures in 1901�2005 was 3.2ºC in December and 
2.5ºC in March. 

 

Fig. 1. Daily mean temperature at the station Helsinki Kaisaniemi in winter 2006�2007 (solid line), and 
the smoothed climatological mean values for 1901�2005 (dotted). 

 

Fig. 2. Monthly mean temperature anomalies (ºC) relative to the mean of 1961�1990 in December 2006 
and March 2007 according to the CRUTEM3v data set (Brohan et al., 2006). Grid boxes in which the 
previous record values were exceeded are indicated with ovals. Grid boxes with missing data are shaded. 

3. Effects of atmospheric circulation on temperature 

In public media, unusual weather or climate events are often proposed to be due to 
one of two seemingly distinct mechanisms: climate change or anomalous atmospheric 
circulation. As noted in the introduction, such a distinction is potentially misleading, 
because atmospheric circulation itself may change in a changing climate. Still, it is of 
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interest to study how large a part of a given climatic anomaly can be explained by 
atmospheric circulation alone.  

Here, we use the mean sea level pressure (MSLP) to explore the impact of 
atmospheric circulation on the temperatures observed in December 2006 and March 
2007. As compared with circulation indicators for the free atmosphere, MSLP has the 
advantage that data are available for the whole 20th century. Here we use the HadSLP2 
data set described by Allan and Ansell (2006). 

In terms of the MSLP, December 2006 was a more anomalous month than March 
2007. The north-south pressure gradient over northern Europe in December was 
exceptionally steep, with a quasi-permanent high over central and southern Europe and 
strong cyclone activity over the Norwegian and the Barents Seas (Figs. 3a�b). This 
resulted in unusually strong advection of mild air from the Atlantic Ocean into northern 
Europe. In March (Figs. 3c�d), the monthly mean MSLP field was closer to its long-
term average. However, in this month as well, a negative pressure anomaly over the 
Arctic to the north of Scandinavia evidenced a northward shift in cyclone activity 
compared with average conditions. The monthly station-based North Atlantic 
Oscillation Index (NAOI) of Jones et al. (1997), which is commonly used for 
characterizing the atmospheric circulation over the North Atlantic and Europe, had in 
December 2006 its 4th highest December value (3.08) since 1901. NAOI for March 
2007 (2.03) was also positive but far less extreme (21st highest since 1901). 

 

Fig. 3. Mean sea level pressure (hPa) in December 2006 (a) and its deviation from the mean of 1901�
2005 (b). (c)�(d) The same for March 2007. The five grid points used in the regression model of Section 3 
are shown with closed circles. 
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To study in more quantitative terms, how large a part of the warm anomalies in 
Helsinki in December and March can be explained by the atmospheric circulation, a 
simple linear regression model was applied. The model used three candidate predictors, 
P, U and V, all computed from the monthly mean MSLP. P = MSLP(60°N, 25°E) 
represents the local pressure in southern Finland, whereas U = MSLP(55°N, 25°E) � 
MSLP(65°N, 25°E) and V = MSLP(60°N, 35°E) � MSLP(60°N, 15°E) are proxies for 
the west and the south components of the geostrophic wind, respectively. This model is 
chosen here for the simplicity of its physical interpretation, although it excludes the 
additional information potentially available in the MSLP field further away from 
southern Finland. More systematic approaches using, for example, the principal 
components of the MSLP field as predictors might be able to explain a somewhat larger 
fraction of interannual temperature variability than our regression model.  

When testing the model in leave-one-out cross-verification over the period 1901�
2005, the best predictions of temperature were obtained when using U and V as the 
predictors. In this case, the linear regression explained 62% of the temperature variance 
in December and 43% of the variance in March. The best one-predictor model (with U 
as the only predictor) explained 34% (35%) of the variance in December (March), 
whereas a linear model with all of P, U and V as predictors was marginally less skilfull 
than the two-predictor (U and V) model. Consequently, the model with U and V as the 
predictors was selected for further use.  

Figure 4 shows scatter plots between the regression-predicted and observed 
temperatures. Unfortunately, although the model captures a substantial fraction of the 
interannual temperature variability particularly in December, the regression residuals 
are still large. The full range for December is from -6.3°C to 4.9°C and that for March 
from -5.7°C to 4.0°C. There are several potential reasons for this: the U and V 
predictors only carry a part of the information available in the monthly mean pressure 
field, the monthly mean pressure field itself gives an incomplete description of the 
actual variation of atmospheric circulation during the month, temperature might be 
affected by the snow and ice conditions preconditioned by the weather in the previous 
months, and so on.  

For December 2006, the regression model predicts a mean temperature of 3.9ºC, 
which is 6.5ºC above the mean for 1901�2005 and only 0.1°C below the actually 
observed temperature. This is the highest December mean temperature predicted by the 
regression for any year since 1901 (Fig. 4a). The regression-predicted value for March 
2007 is, however, only -0.6°C, or 1.8°C above the average for 1901�2005. This value is 
3.7°C below the observed temperature, and it is by no mean exceptional when compared 
with the regression-predicted March mean temperatures in earlier years (Fig. 4b). 

A naive interpretation of these results would be that (i) the mild temperatures in 
December 2006 were almost completely explained by an exceptional atmospheric 
circulation, whereas (ii) the circulation only explained a third of the warm anomaly in 
March 2007, leaving most of the anomaly to a circulation-independent contribution 
from global warming. However, the large interannual variability of the regression 
residuals in Fig. 4 clearly precludes such an exact deterministic interpretation. 
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Consequently, the potential �climate change contribution� in the positive temperature 
anomalies in these two months cannot be quantified with a sufficient accuracy by this 
method.  

 

Fig. 4. Scatter plots between the temperatures predicted by the regression model of Section 3 and the 
temperatures observed in Helsinki in (a) December and (b) March. Later years are coded with 
increasingly dark shading, as indicated by the legend, and special symbols are used for December 2006 
and March 2007. 

 
Potentially, the performance of the regression model could be improved by a more 

clever choice of the predictors. However, a rather large improvement would be required 
to make the results accurate enough. From model simulations, we would now expect the 
true climatological mean temperature in Helsinki in winter to be slightly over 1°C above 
its 20th century mean (Section 4). For the regression to reliably detect a climate change 
contribution of 1°C in the mean temperature of an individual month, the interannual 
standard deviation of the residuals should not be much larger than 0.5°C. This can be 
compared with the actual standard deviation of 1.9°C for both December and March in 
our regression model. To achieve this, the variance unexplained by the regression 
should be reduced by over an order of magnitude or, conversely, the explained variance 
should increase to about 97% in December and 96% in March. This is an extremely 
high accuracy requirement for any regression-based method. 

4. Winter 2006�2007 in the context of the observed climate and estimated actual 
present-day climate 

4.1 Analysis of observed trends 

During the past century, the global mean temperature increased by 0.74 ± 0.18ºC 
(Trenberth et al., 2007), with most of the warming in the past 50 years being very likely 
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due to increasing greenhouse gas concentrations (Hegerl et al., 2007). The climate in 
Helsinki has also become warmer. Expressed as a linear trend, the December and March 
mean temperatures in Helsinki increased by 1.9ºC and 1.8ºC during the years 1901�
2007, respectively, while the annual mean temperature increased by 1.3ºC (Table 1). 
However, as the local natural variability is much larger than the variability on the global 
scale, it is of interest to ask whether these trends are statistically significant. 

Table 1. Linear temperature trends observed in Helsinki in 1901�2007 (ºC / 106 yr) and the 
corresponding mean and standard deviation for the trends in the CMIP3 simulations. P1, P5 and P15 
indicate the significance levels of the observed trends, based on a block permutation method with block 
lengths of 1, 5 and 15 years, respectively (see text for more details). 

 December March Annual mean 

Observations 1.89ºC 1.82 ºC 1.29ºC 
P1  0.037 0.015 0.0001 
P5 0.017 0.007 0.001 
P15 0.071 0.023 0.010 
CMIP3, mean 1.87ºC 1.60ºC 1.09ºC 
CMIP3, StDev 1.22ºC 0.88ºC 0.61ºC 

 
 
The trend significance was studied using a block permutation method, in which 

the observed time series was divided to 107/n n-year (or n+1-year, to get all 
observations included) blocks. The order of these blocks was randomly permuted for a 
large number of times, and the frequency of warming trends in the resulting time series 
that exceeded the actually observed trends was computed. With n = 1, the method 
suggests an extremely high significance for the observed annual mean warming (larger 
positive trends occurred in only 0.01% of the permuted time series), and the trends in 
December and March are also found to be significant at the 5% level. However, these 
values are suspect, since the test with n = 1 essentially treats natural variability as a 
white noise process. With increasing n, the test becomes more robust to autocorrelation 
on interannual and longer time scales. However, for n = 5, the results are nearly 
unchanged. Even with n = 15, the annual mean trend is found to be significant at the 1% 
level and the trend in March at the 5% level, whereas the warming in December fails to 
be significant at the 5% level.   

Taking a conservative view on these results, one might argue that, at least for 
December and perhaps even for March, there is still a non-negligble chance that the 
observed warming reflects no real change in climate. On the other hand, the highly 
significant global warming alone makes it physically unlikely that the climate in 
Helsinki should have remained unchanged. To us this implies that the actual present-day 
temperature climate, including the frequency of extremes, should not be estimated from 
past observations alone. 
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4.2 Model-based modification of observations 

In RR08, a model-based approach for estimating the actual present-day 
temperature climate was proposed. In a hindcast test, which only used observations up 
to the year 1990, this technique was encouragingly successful in predicting the 
temperature climate that prevailed in land areas of the world during the period 1991�
2002. Here, we apply this approach to December and March mean temperatures in 
Helsinki. We then proceed to estimate the return periods for the temperatures observed 
in December 2006 and March 2007, basing these estimates on one hand on the observed 
climate during the years 1901�2005 and on the other hand on the estimated present-day 
(early 21st century) climate.   

To estimate the probability distributions that characterize present climate, a two-
step procedure is followed. First, past observations are adjusted with the aim of making 
them representative of current climate conditions. Second, the desired probability 
distributions are derived from the distribution of these adjusted observations.  

The adjustment is described in detail in RR08. Basically, the method assumes that 
the local time mean climate and the amplitude of interannual variability both change 
linearly with the 11-year running mean of the global mean temperature. The 11-year 
averaging is rather arbitrary, but is used as a simple way to filter out most of the 
unforced interannual variability in the global mean temperature. The evolution of the 
11-year running mean global mean temperature is taken from observations (Brohan et 
al., 2006) up to the year 2002, after which is inferred from model simulations.  

The regression coefficients that relate the local time mean climate and its 
interannual variability to the global mean temperature are purely model-based. They are 
derived from simulations spanning the 20th and 21st centuries, using the the Special 
Report on Emissions Scenarios (Naki�enovi� et al., 2000) A1B scenario for the latter. 
Because the simulations cover a longer period and a much larger range of global mean 
temperature change than the observations that are available to date, the regression 
coefficients derived from them are much less sensitive to sampling effects than would 
be the case for observation-based coefficients. Of course, this choice also includes a risk 
of bias, both because of model errors and because the patterns of forced climate change 
might change with time, for example due to changes in the balance between greenhouse 
gas and aerosol forcing. However, as we note below, the warming observed in Helsinki 
this far is consistent with the model simulations from which the regression coefficients 
are derived.  

The adjustment is made separately for 22 coupled atmosphere-ocean general 
circulation models from 15 research institutions (Table 2), all participating in the World 
Climate Research Programme 3rd Coupled Model Intercomparison Project, CMIP3 
(Meehl et al., 2007b). For comparison with the observed temperature trends shown in 
the top of Table 1, the mean and inter-model standard deviation of the simulated 
temperature trends in the grid box closest to Helsinki are shown in the bottom of the 
same table. While the observed warming in 1901�2007 was slightly larger than the 
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warming on the average simulated by the models, particularly in March, the difference 
is small and well within the variability between the individual models.  

Table 2. The CMIP3 models used in this study. 

Model Institution  

BCCR-BCM2.0 Bjerknes Centre for Climate Research, Norway 

CGCM3.1 (T47) Canadian Centre for Climate Modelling and Analysis 

CGCM3.1 (T63) same as previous 

CNRM-CM3 Météo-France 

CSIRO-MK3.0 CSIRO Atmospheric Research, Australia 

ECHAM5/MPI-OM Max Planck Institute (MPI) for Meteorology, Germany 

ECHO-G University of Bonn and Model & Data Group, Germany; Korean 
Meteorological Agency 

FGOALS-g1.0 Chinese Academy of Sciences 

GFDL-CM2.0 Geophysical Fluid Dynamics Laboratory, USA 

GFDL-CM2.1 same as previous 

GISS-AOM Goddard Institute for Space Studies, USA 

GISS-EH same as previous 

GISS-ER same as previous 

INM-CM3.0 Institute for Numerical Mathematics, Russia 

IPSL-CM4 Institut Pierre Simon Laplace, France 

MIROC3.2 (hires) Center for Climate System Research, National Institute for Enviromental 
Studies and Frontier Research Center for Global Change, Japan 

MIROC3 (medres) same as previous 

MRI-CGCM2.3.2 Meteorological Research Institute, Japan 

NCAR-CCSM3 National Center for Atmospheric Research, USA 

NCAR-PCM same as previous 

UKMO-HadCM3 Hadley Centre for Climate Prediction and Research / Met Office, UK 
UKMO-HadGEM same as previous 

 
 
The adjustment of the December and March mean temperatures in Helsinki is 

illustrated in Fig. 5. As a result of the intermodel variation in the regression coefficients 
(and, to a smaller extent, in the global warming simulated after 2002), 22 estimates of 
the �equivalent� present-day temperature are obtained for each past temperature 
observation. However, for both December and March and for all 22 models, the 
adjusted temperatures exceed the observed values for all years in 1901�2005. The 
difference increases backwards in time, because the global mean temperature was 
further below its present-day level in the early 20th century than in the last few decades. 
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For the same reason, the scatter among the 22 estimates also increases backwards in 
time. Finally, one may note that the adjustment increment to the observed temperatures 
tends to be slightly larger for cold than mild December and March months. This is 
because, in both December and March, most of the models suggest a decrease in 
interannual temperature variability in southern Finland with increasing global mean 
temperature. On the average, the models suggest a 2.1°C (1.8°C) increase in the local 
December (March) mean temperature in Helsinki, and an 8% (9%) decrease in the 
interannual standard deviation, for each 1°C of global mean warming. 

 

Fig. 5. Observed (a) December and (b) March mean temperatures in Helsinki in 1901�2005 (solid line), 
and the adjusted monthly mean temperatures based on the method described in Section 4. The small grey 
dots show the temperatures based on the results of the 22 individual models and the larger dots the 22-
model mean. 

4.3 Return period estimates 

We now proceed to estimate the probability of occurrence of extremely warm 
months (i.e., equal to or warmer than a selected threshold value) and the equivalent 
return periods (inverse of the exceedance probability). In doing this, two partly 
subjective choices are needed: weighting between the probabilities based on the results 
of the 22 models, and the way in which probability is estimated from a single time 
series of 105 (original or adjusted) observations. As for the weighting, we simply 
assume that all 22 models give equally plausible results and therefore deserve the same 
weight, but we also study the range of return periods obtained from the individual 
models. 

For converting a time series of observations to a probability estimate, a raw count 
of cases that exceed the selected temperature threshold is one option. However, this 
method gives no meaningful information on the exceedance probability of temperatures 
outside the range of values that actually occur in the time series. For this extrapolation 
to the extreme tails, and also for reducing the sampling variability of the probability 
estimates in the inner parts of the distribution, analytical functions fitted to the data can 
be used. Unfortunately, the fitting might also introduce systematic errors, if the actual 
and the assumed form of the distribution differ.  
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As a first choice, the Generalized Pareto Distribution (GPD) as implemented in 
the Extremes Toolkit developed at the United States National Center of Atmospheric 
Research (Gilleland et al., 2005; Katz et al., 2005) was tested. However, the results 
appeared problematic. For the December and March mean temperatures observed in 
2006�2007, infinite return period estimates were obtained. Furthermore, the method 
suggested a return period of 350 (500) years for the warmest December (March) mean 
temperature observed in 1901�2005, i.e. 2.9ºC (2.0ºC). These return periods seem 
surprisingly long, particularly as these peak values were not outliers when compared 
with the other December and March mean temperatures in 1901�2005 (the second 
highest value for December being 2.8ºC and that for March 1.8ºC). This apparent 
mismatch suggests that the assumptions underlying the GPD distribution or their 
specific implementation in the Extremes Toolkit may not be well fulfilled by our 
temperature data. 

Consequently, we reverted to the Gaussian kernel smoothing used in RR08. The 
probability density f(T) is calculated as   
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where, in the present application, N = 105. Ti (1 � i � N) are the observed or 
adjusted temperatures in the years 1901�2005, and M and s are their mean and standard 
deviation. b (0 < b � 1) is a smoothing coefficient and G is the density function of the 
standard normal distribution. For b = 1, (1) returns a Gaussian distribution with mean M 
and standard deviation s. For smaller values of b, the mean and the standard deviation 
are the same, but the shape of the distribution follows the original discrete distribution 
more closely. With increasing b, sampling errors in the density function f(T) and in the 
cumulative distribution function decrease. On the other hand, too strong smoothing may 
introduce systematic biases in the smoothed distribution, particularly near its tails, if the 
distribution of the input data differs significantly from normal. There is thus a trade-off 
between these two factors, but the exact choice of b is unfortunately quite subjective.  

Figure 6a compares the observed (1901�2005) frequency distribution of 
December mean temperature with the continuous distributions obtained with four values 
of b (1, 1/2, 1/3, and 1/5). The observed distribution is substantially skewed, with a long 
tail to the left. The coefficient of skewness is -0.71, being significantly different from 
zero at the 0.5% risk level. As a result, the pure normal distribution (b = 1) fits the data 
badly, giving spuriously high probabilities for very mild December mean temperatures. 
With decreasing b, the agreement with the observed distribution improves. On the other 
hand, with the lowest of the tested values (b = 1/5), the continuous distribution clearly 
begins to pick up such irregularities of the observed distribution that most likely result 
from sampling variability. 

The probability estimates in the extreme upper tail are very sensitive to the choice 
of b (Fig. 6b). The resulting return period estimates for TDecember � 4.0ºC are only 54 
years for b = 1 and 145 years for b = 1/2, but the poor fit to the actual data makes such 
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short return periods appear unlikely. For, b = 1/3, a return period of 340 year is 
obtained, whereas b = 1/5 increases the return period to 1700 years.  

For the rest of the paper, we use the value b = 1/3 for both December and March, 
but we stress that this choice is subjective. However, as shown in the Appendix, the 
return period estimates that are obtained with b = 1/3 agree within a factor of two with a 
very different method based on Monte Carlo sampling of daily temperature 
observations. This gives us some confidence that our choice of b is reasonable for the 
present purpose.  

 

Fig. 6. (a) Frequency distribution of observed December mean temperatures in Helsinki in 1901�2005 
(bars) and the continuous probability distribution estimated with the Gaussian kernel, for four values of 
the smoothing coefficient b (see the legend for explanation of line types). (b) The same for the cumulative 
probability function under the temperature range 1�5ºC. The bold step line represents the discrete 
distribution obtained directly from the observations and the four smooth lines the distributions from the 
Gaussian smoothing. 

The probability density functions of December and March mean temperature 
obtained with b = 1/3 are shown in Fig. 7. In December, there is a warming of about 
1.3ºC in the mean value between the distribution representing the observed (1901�2005) 
climate and the multi-model mean estimate of the present climate, whereas the 
corresponding warming in March is 1.1ºC. However, due to the decrease in interannual 
variability in most of the models, the shift in the upper tail of the distribution is slightly 
smaller. Although the results based on the 22 individual models vary, all the models 
indicate a substantial increase in the probability of very high December and March 
mean temperatures.  
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Fig. 7. (a) Probability distributions of (a) December and (b) March mean temperature in Helsinki, using 
Gaussian kernel smoothing with b = 1/3. The dashed line shows the observed distribution for 1901�2005, 
and the other lines model-based distributions corresponding to the climate in 2006�2007 (thin lines for 
the individual 22 models and lines with open circles for the 22-model mean). 

The probability of exceeding the temperatures observed in winter 2006�2007 can 
be visually evaluated from Fig. 7 as the area below the probability curves and to the 
right of the vertical lines at 4.0ºC (December) and 3.1ºC (March). The resulting return 
period estimates are given in Table 3, both for these thresholds and for the previous 
record values of 2.9ºC in December and 2.0ºC in March. Despite the uncertainties 
associated with both the curve fitting and the differences between the climate change 
estimates from the 22 models, the results suggest that the probability of extremely mild 
winter months is now much larger than the observations for 1901�2005 would indicate. 
The resulting best-estimate return period for TDecember � 4.0ºC, 57 years, is six times 
shorter than the value of 340 years derived directly from the observations, and the 
corresponding difference for TMarch � 3.1ºC (84 versus 725 years) exceeds a factor of 
eight. Even for the models with the smallest warming, and therefore the smallest shift in 
the probability distributions, the decrease in these two return periods is about a factor of 
three. Furthermore, a large decrease in return periods is also found for the temperature 
thresholds that correspond to the previous record values. Our best-estimate present-day 
return period for TDecember � 2.9ºC, 17 years, is less than a third of the value derived from 
past observations. Similarly, a March mean temperature of at least 2.0ºC is now 
estimated to occur in one year out of 14, which is four times more often than the 
corresponding Gaussian kernel estimate for 1901�2005. Furthermore, because the last 
several decades of the period 1901�2005 were already non-negligibly affected by 
anthropogenic global warming, the difference in return periods between the present and 
the truly preindustrial climate would be even larger.  

For comparison, the adjustment of past temperature observations was repeated 
without including changes in interannual variability. Because the variability decreases 
in most models, the neglect of this leads to a larger shift in the upper end of the 
temperature distribution. Thus, shorter present-day return period estimates for high 



 Ongoing Global Warming and Local Warm Extremes: a Case Study of Winter 2006�2007 59 

temperatures are obtained, although the difference is relatively modest (compare the last 
and second rows of Table 3). 

Table 3. Estimated return periods (years) for December and March mean temperature in Helsinki. The 
thresholds 2.9ºC and 2.0ºC are the warmest December and March mean temperatures prior to the year 
2006, whereas 4.0ºC and 3.1ºC are the corresponding values for winter 2006�2007. In each table cell, the 
first value is based on Gaussian kernel smoothing with b = 1/3, and the second value on a direct count of 
cases (--- where the threshold value exceeds the maximum of the data set). The estimates for winter 
2006�2007 are based on the method detailed in Section 4.2. The best estimate, minimum and the 
maximum are derived from the corresponding 22-model mean probability estimates and the intermodel 
range of these estimates. 

 December March 

 � 2.9ºC � 4.0ºC � 2.0ºC � 3.1ºC 

1901�2005, observations 56 (105) 340 (---) 57 (105) 725 (---) 

2006�2007, best estimate 17 (18) 57 (96) 14 (12) 84 (2310) 

2006�2007, minimum 10 (11) 28 (35) 9 (8) 33 (105) 

2006�2007, maximum 26 (26) 122 (---) 25 (53) 221 (---) 

2006�2007, best estimate 
with unchanged variability 

14 (15) 41 (51) 10 (11) 51 (257) 

 
 

As an additional check, we recalculated the return periods from the exceedance 
probabilities obtained from a simple count of cases. The results for this alternative, 
which avoids the potential systematic biases of analytical distributions but is prone to 
larger sampling errors, are shown in parentheses in Table 3. When applied to the 
observations from 1901�2005, the direct count gives no meaningful information on the 
return period of the temperatures observed in December 2006 and March 2007, and a 
return period of 105 years for the previous record values of 2.9ºC in December and 
2.0ºC in March. For the present-day climate, the return period estimates for these 2.9ºC 
and 2.0ºC thresholds are very similar to those obtained from the Gaussian kernel. For 
the 4.0ºC (December) and 3.1ºC (March) thresholds, larger differences occur, the direct 
count giving longer return periods than the Gaussian kernel. This might suggest that the 
Gaussian kernel gives too short return periods for extremely warm temperatures, but 
this suggestion must be weighted against the large sampling errors in the tail of the 
distribution. The most striking case of apparent disagreement occurs for TMarch � 3.1ºC, 
the direct count suggesting a present-day return period of 2310 years and the Gaussian 
kernel 84 years. Yet, when the threshold is lowered by just 0.4ºC to 2.7ºC, the return 
period estimate from the direct count method decreases to 92 years. Thus, the difference 
between the methods is much less dramatic in terms of temperature than in terms of the 
return period. 

Finally, return period is a potentially misleading term in a changing climate. If 
climate changes proceed as suggested by the model simulations for the A1B scenario, 
the winter mean temperature in Helsinki should increase by about 2ºC from its present-
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day (2008) level by the year 2050. As a result of this warming, the probability of very 
high December and March mean temperatures is likely to increase rapidly with time. 
For threshold values that just exceed the new records from winter 2006�2007 (4.1ºC in 
December and 3.2ºC in March), the multi-model mean results suggest a yearly 
probability of occurrence of over 4% in the year 2030 and almost 14% in 2050 (Fig. 8a). 
The record values from winter 2006�2007 are therefore unlikely to survive as long as 
their present-day return periods suggest. For both December and March, there appears 
to be about a 50% probability that new records will be set within the next 25 years, and 
about a 90% probability that this will happen by the year 2050 (Fig. 8b)1. These results 
should be nearly independent of the choice among the SRES scenarios, which, however, 
would become important in the second half of the 21st century (Meehl et al., 2007a). 

 

Fig. 8. (a) Estimated probabilities for the March (solid line) and December (dashed line) mean 
temperatures in Helsinki exceeding the values observed in winter 2006�2007. (b) The corresponding 
cumulative probabilities, assuming that the temperatures in consecutive years are uncorrelated. The figure 
is based on all-model mean probabilities for the A1B emissions scenario, using Gaussian kernel 
smoothing with b = 1/3. 

5. Summary 

An increase in the magnitude and frequency of warm extremes is regarded as a 
very likely consequence of projected future global warming (Meehl et al., 2007a), and 
some evidence for such an increase is already seen in observations (Trenberth et al., 
2007). Yet, the interpretation of any single extreme event is a challenge, not least for the 
operational meteorologists that are approached from the media with the inherently 
unfair question of �was this caused by climate change�? 

Here, we have studied the interpretation of two record warm winter months in 
Helsinki, Finland, December 2006 and March 2007, by using observations and model 
simulations. First, a regression model was built to study the connection between the 
observed temperatures and the atmospheric circulation. This model suggested that 
almost the whole warm anomaly in December was due to exceptionally strong westerly 

                                                 
1 If the direct count method had been used instead of the Gaussian kernel, the time of crossing the 50% 
level in Fig. 8b would have been delayed by 3�5 years. Conversely, if the observations from winter 2006�
2007 had been included in the calculation, this time would have been advanced by 2�4 years.  
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flow from the North Atlantic into northern Europe, but it only attributed a third of the 
temperature anomaly in March to anomalous circulation. These results might seem to 
suggest a substantial �climate change component� in the warmth of March but not in 
December, but such a clear-cut interpretation is unwarranted.  

The first and most important difficulty relates to the imperfect skill of the 
regression model. Because the interannual variability of the regression residuals was 
much larger than the likely magnitude of the actual �climate change component� in the 
observed temperatures, it is obvious that the latter cannot be meaningfully estimated 
from the regression results. While a more skillful regression model might reduce this 
problem to some extent, a very large improvement would have been required to achieve 
sufficient accuracy. This problem in the interpretation of regression results is likely to 
be pertinent to all areas with large interannual climate variability.  

As a second complication, the atmospheric circulation itself might change with 
changing climate. In fact, an increase in wintertime westerlies in northern Europe is a 
common feature in, at least, most climate model simulations with increased greenhouse 
gas concentrations (Meehl et al., 2007a). Yet, because this change in circulation is too 
small to be the dominant cause of the warming in climate models (Rauthe and Paeth, 
2004; Stephenson et al., 2006), this issue is probably less important than the inherent 
statistical uncertainty in the regression residuals.   

Second, we used a frequentist approach. The probability of temperatures similar to 
or higher than those observed in December 2006 and March 2007 was first estimated by 
fitting analytical distributions to the observations from 1901�2005. Then, the same 
calculation was repeated after adjusting the observations for climate change, by using 
the observed evolution of the global mean temperature and results from 22 climate 
models. 

Although the quantitative probability estimates obtained from this calculation 
were sensitive to the details of curve fitting, the general conclusions were very clear. As 
estimated from the observed variation of temperature in 1901�2005, the temperatures 
that occurred in December 2006 and March 2007 were found to have a return period of 
several hundred years. After the model-based adjustment of the observations for climate 
change, however, best-estimate return periods of less than a century were obtained. 
Even when the models with the smallest warming in southern Finland were used for 
deriving the adjustments, the present-day return periods were still found to be a factor of 
three shorter than the return periods estimated from the previously observed climate. 
Thus, although it is impossible to prove a causal connection between the ongoing global 
warming and the warmth of December 2006 and March 2007 in Helsinki, our analysis 
suggests that the probability of occurrence of such extremely mild months has already 
been substantially increased from what it was before.  

Even for the estimated present-day climate conditions, the warmth of December 
2006 and March 2007 appears fairly unusual. However, it is essential to remember the 
selection effect: these two months were chosen for this study just because they were 
exceptional. In Helsinki, no other record warm months occurred during the first seven 
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years of the 21st century. Observing two very warm months with a return period of 50�
100 years during a seven-year period is by no means statistically unusual. 

Finally, the return period estimates derived for the present climate will not be 
representative for the future. Our analysis of model simulations for the A1B scenario 
suggests about a 90% probability that the records from December 2006 and March 2007 
will be broken at least once by the year 2050. 
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Appendix: estimation of the probability distribution on monthly mean temperatures 
from daily temperature data 

This appendix describes a simple method for estimating the probability 
distribution of monthly mean temperatures from daily temperature data. This method is 
not applicable to our estimates of actual present-day climate, because the technique 
developed in RR08 has not yet been extended to the modification of daily temperature 
observations. However, the method provides an alternative means of estimating the 
baseline temperature climate in the years 1901�2005. The method consists of the 
following eight steps: 

1. Calculate, for the given calendar month, the long-term mean (Mmon) and variance 
(Vmon) of the monthly mean temperature. 

2. Calculate, separately for each calendar day, the long-term mean of the daily mean 
temperature. Then compute, for each day in the time series, the daily temperature 
anomaly by subtracting the long-term daily mean from the observed value.  

3. Compute, for each calendar day, the mean square of the daily temperature anomalies. 
Denote the average of this over the whole calendar month as Sday. 

4. Calculate the ratio R = Sday / Vmon. Denote the integer part of this as IR.   

5. Select, by random, IR+1 daily temperature anomalies from the daily anomalies 
available for the given calendar month. 

6. Calculate a weighted mean of the selected anomalies. The first IR anomalies are 
given unit weight, whereas the last is given a lower weight of  
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7. Add the weighted mean anomaly obtained from step 6 to the long-term mean monthly 
mean temperature Mmon. Denote the result as Tsim. 

8. Repeat the steps 5�7 a large number (here: one million) of times to estimate the 
probability distribution of Tsim. 

By this procedure, the mean of Tsim becomes Mmon. Furthermore, with the weights 
chosen in step 6, the variance of Tsim becomes (from the additivity of variances applied 
to a weighted sum) 
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For R > 2 there would be alternative ways of choosing the weights that would give 
the same variance, but the one specified in step 6 is the simplest. The ratio R tells, in 
essence, how many �independent� days there are in terms of temperature in a given 
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month. For the observations in Helsinki in 1901�2005, RDecember = 2.99 and RMarch = 
2.75. Thus, in these months, the characteristic time scale of temperature variation in 
Helsinki is of the order of ten days. 

Except for Mmon and Vmon, this Monte Carlo simulation procedure includes no 
information on the observed frequency distribution of monthly mean temperatures. 
Nevertheless, the resulting distributions of Tsim replicate the general shape of these 
observed distributions remarkably well, and they are in even closer agreement with the 
Gaussian kernel estimate with b = 1/3 (Figure A1). This suggests that the observed 
skewness of the monthly mean temperature distributions, with a long tail to the left, is a 
direct consequence of a similar (but stronger) skewness in the distribution of daily 
temperatures.  

 

Fig. A1. (a) Frequency distribution of observed December mean temperatures in Helsinki in 1901�2005 
(bars) and the continuous probability distributions estimated by Monte Carlo simulation based on daily 
data (solid line) and with the Gaussian kernel with b = 1/3 (dashed line). (b) as (a), but for March. 

For both December and March, the good agreement between the two methods 
extends even to the extreme right tail. The resulting best-estimate return period for 
TDecember � 4.0ºC from the simulation method is 608 years, to be compared with 340 
years from the Gaussian kernel. For TMarch � 3.1ºC, the simulation method suggests a 
return period of 441 years, whereas the Gaussian kernel gives 725 years. Although this 
broad agreement is no absolute proof of correctness, it supports the idea that the 
estimated return periods of several hundred years are of the right order of magnitude. 


